CHALMERS

Stack Traces in Haskell

Arash Rouhani

Chalmers University of Technology

Master thesis presentation
March 21, 2014

CHALMERS
Contents

Motivation

Background
The attempt in August 2013

Contribution

Contents Arash Rouhani — Thesis presentation 2/32

CHALMERS

An old problem

e Try running this program:

1 main = print (f 10)
2 fx=...gy ...
3 gx=...hy ...
4 hx= ... head []

Motivation Arash Rouhani — Thesis presentation 3/32

CHALMERS

An old problem

e Try running this program:

1 main = print (f 10)
2 fx=...gy ...
3 gx=...hy ...
4 hx= ... head []
e You get

$ runghc Crash.hs
Crash.hs: Prelude.head: empty list

Motivation Arash Rouhani — Thesis presentation 3/32

CHALMERS

An old problem

e Try running this program:

1 main = print (f 10)
2 fx=...gy ...
3 gx=...hy ...
4 hx= ... head []
e You get

$ runghc Crash.hs
Crash.hs: Prelude.head: empty list

e But you want

$ runghc Crash.hs
Crash.hs: Prelude.head: empty list
in function h
in function g
in function f
in function main

Motivation Arash Rouhani — Thesis presentation 3/32

CHALMERS
... with new constraints

e Should have very low overhead
e If you hesitate to use it in production, I've failed

e Not done for Haskell before, all earlier work have an overhead.

Motivation Arash Rouhani — Thesis presentation 4/32

CHALMERS
Background contents

e |s stack traces harder for Haskell?

e Will the implementation only work for GHC?

Background Arash Rouhani — Thesis presentation 5/32

CHALMERS

Laziness

D U e W N =

e Consider the code

myIf :: Bool -> a -> a -> a
myIf True xy = x
myIf False xy =y

-- Then evaluate
myIf True 5 (error "evil crash")

o Will the usage of error make this crash?

Background — Haskell

Arash Rouhani — Thesis presentation

6/32

CHALMERS

Laziness

D U e W N =

e Consider the code

myIf :: Bool -> a -> a -> a
myIf True xy = x
myIf False xy =y

-- Then evaluate
myIf True 5 (error "evil crash")

o Will the usage of error make this crash?

e No, (error "evil crash") is a delayed computation.

Background — Haskell Arash Rouhani — Thesis presentation

6/32

CHALMERS

Case expressions

e Consider the code

1 case myBool of
2 True -> this
3 Flase -> that

e So is pattern matching just like switch-case in C?

Background — Haskell Arash Rouhani — Thesis presentation 7/32

CHALMERS

Case expressions

e Consider the code

1 case myBool of
2 True -> this
3 Flase -> that

e So is pattern matching just like switch-case in C?
e NO!

Background — Haskell Arash Rouhani — Thesis presentation 7/32

CHALMERS
Case expressions

e Consider the code

1 case myBool of
2 True -> this
3 Flase -> that

e So is pattern matching just like switch-case in C?
e NO!

e myBool can be a delayed computation, aka a thunk

Background — Haskell Arash Rouhani — Thesis presentation 7/32

CHALMERS
History of GHC

e Compiles Haskell to machine code since 1989

e The only Haskell compiler people care about

Background — GHC Arash Rouhani — Thesis presentation 8/32

CHALMERS

Usage

e Compile and run (just like any other compiler)
$ ghc --make Code.hs

$./a.out
123

Background — GHC Arash Rouhani — Thesis presentation 9/32

CHALMERS

The magical function

e My work assumes the existence of

1 getDebugInfo :: Ptr Instruction -- Pointer to runnable machine code
2 -> I0 DebugInfo -- Haskell function name etc.

Background — GHC— Magic function Arash Rouhani — Thesis presentation 10/32

http://www.personal.leeds.ac.uk/~scpmw/site.html

CHALMERS

The magical function

e My work assumes the existence of

1 getDebugInfo :: Ptr Instruction -- Pointer to runnable machine code
2 -> I0 DebugInfo -- Haskell function name etc.

e This is a recent contribution not yet merged in HEAD
e Author is Peter Wortmann, part of his PhD at Leeds

Background — GHC— Magic function Arash Rouhani — Thesis presentation 10/32

http://www.personal.leeds.ac.uk/~scpmw/site.html

CHALMERS

The magical function

e My work assumes the existence of

1 getDebugInfo :: Ptr Instruction -- Pointer to runnable machine code
2 -> I0 DebugInfo -- Haskell function name etc.

e This is a recent contribution not yet merged in HEAD
e Author is Peter Wortmann, part of his PhD at Leeds

e In essence, 95% of the job to implement stack traces was
already done!

Background — GHC— Magic function Arash Rouhani — Thesis presentation 10/32

http://www.personal.leeds.ac.uk/~scpmw/site.html

CHALMERS
The compilation pipeline

e Well GHC works like this:

Haskell —» GHC |—» Executable

Background — GHC— Magic function Arash Rouhani — Thesis presentation 11/32

CHALMERS
The compilation pipeline

e Well GHC works like this:

Haskell —» GHC |—» Executable

e Or rather like this

Files

Background — GHC— Magic function Arash Rouhani — Thesis presentation 11/32

CHALMERS
The compilation pipeline

e Well GHC works like this:

Haskell —» GHC |—» Executable

e Or rather like this

e We say that GHC has many Intermediate Representations

Background — GHC— Magic function Arash Rouhani — Thesis presentation 11/32

CHALMERS
So there must be debug datal

e Again:

Haskell —»{ GHC |—» Executable

Background — GHC— Magic function Arash Rouhani — Thesis presentation 12/32

CHALMERS
So there must be debug datal

e Again:

Haskell —»{ GHC |—» Executable

e The intuition behind getDebugInfo is:

Haskell «— getDebuglinfo |l&«— Executable

Background — GHC— Magic function Arash Rouhani — Thesis presentation 12/32

CHALMERS
So there must be debug datal

e Again:

Haskell —»{ GHC |—» Executable

e The intuition behind getDebugInfo is:

Haskell «— getDebuglinfo |l&«— Executable

e For this, we must retain debug data in the binary!

Background — GHC— Magic function Arash Rouhani — Thesis presentation 12/32

CHALMERS

Lets get to work!

addi tion Int ->1nt ->Int Ve . ~
— addition X y = (x +y) N
addition i Int -> Int -> Int N (Haskell)
addition Xy = (x +y) (Haskell N

addi tion_r8m GHC. Types. Int -> GHC Types.Int -> GHC Types. Int

[Golid, Arity=2, Str=DmdType] -

\ (x_aol GHC. Types. Int) (y_adm:: GHC Types.int) -> /
sro<stages. hs: 3: 1-22>
addi ti on_r8m :: GHC. Types. I nt

> GHC. Types. Int -> GHC. Types. Int__

[Gol1d, Arity=2, Str=DmdType]
81 :: GHC Types.Int) (y_adm:: GHC Types.int) ->| COre
m + @ GHC. Types. I nt GHC. Num $f Nunint x_a9l y_a9in.

Num +

@G Types. | nt
GHC. Num Sf Nur nt
(src<stages. hs: 3: 17> x_agl)
(src<stages. hs: 3: 21> y_aom)

Core
\.

)
< » _
= addi tion_r8m:: GHC Types.int -> GHC. Types.|nt -> GHC Types. |nt
@ S| |(lid, Aity=2, Str=DmiType, Unf=therCon (]]
©| | addition_r8m:: GHC Types.Int -> GHC Types. |nt '>G*CWDES‘N k7 sat-only \r srt:SRT:[(r90, GHC. Num $fNumint)] [x_smg y_sm]
@| |[ol1d. Arity=2, Str=DmiType, Unf=QtherCon [@ srcestages. hs: 3: 1- 22> N N
° sab-only \r'sri: SRE[(190, G tm ST Nurd m)] [x_sny y_snr] 2 orc<stages. he: 3: 175
% GHC. + GHC Num §tNunint x_smy y_s! ; sroestages. hs: 3: 21> GHC. Num + GHC. Num $f Nunint x_sng y_sn;
2 >
]
8 ol [
> e - || irtick sreestages. hs: 3:1-22>
a||° o tick sre<stages. hs: 3: 17>
GHC. Num $f Nunt nt_cl osure; [/ si gn [Cmm) > Itick sro<stages. hs: 3: 21>
Teaf (@10 320] = staeppp i nfo; | 17 Gmtore N 2
Pedl(ald + 20)] = smo:iPear /i amStore — o
p L Ped; /I QmBtore = GHC Num Sf Nur nt_cl osure; — // GAssi gn
al | GHC Num + mre(m) args: 32, res: 0, upd: 8 // CmCall 164[(ol d + 32)] = stg ap ppinfo: 11 o ore -
Poaf (ol d + 24)] = _smo::P64; [/ CmBtore

PG4[(ol d + 16)] = _snp::P64; [/ CmBlore

Cal |\ G Num +Li n1O(RB) args: 32, res: 0. upd: 8 1/ amcall
_onG
movq % 14, % ax
oVl SGHC. Num $f Nur nt_cl osur e, % 14d stemb\y/‘ .
movq $stg_ap_pp_i nf o, - 24(% bp) N , S
movq % ax, - 16(% bp) — movq % 14, % ax 68\
movq % si , - 8(% bp) movl SGHC. Num $f Nurit nt_cl osur e, % 14d

addq $- 24, % bp movg $stg_ap_pp_i nf o, - 24(% bp)
jnp movq % ax, - 16(% bp)

movq %si , - 8(% bp)

addq §- 24, % bp

i GHC Num +_info

GHC. Num +_i nf o

“«gssemb/\y/‘

Background — GHC— Magic function Arash Rouhani — Thesis presentation 13/32

CHALMERS

What happened?

eng — one .
movq % 14, 9% ax 7 x64 O\ movq % 14, 9% ax "R\
movl SGHC. Num $f Nurt nt_cl osur e, % 14d () MoVl SGHC. Num $f Nur nt_cl osur e, % 14d [X)
movq $stg._ap_pp_i nf o, - 24(% bp) \assembly/ movq $stg_ap_pp_i nf o, - 24(% bp) \assembly/
movq % ax, - 18(% bp) - movq % ax, - 16(% bp) el
movq % si | - B(% bp) movq % si . - B(% bp)
addq $- 24, % bp addq $- 24, % bp
jmp GIC Nim +_info jmp GC Nim +_info

e Did we just drop the debug data we worked so hard for?

Background — GHC— Magic function Arash Rouhani — Thesis presentation 14/32

CHALMERS

This is a solved problem, of course!

e DWAREF to the rescuel!

< 1><0x0000008d>

< 2><0x000000b3>

< 2><0x000000cf>

Background — GHC— Magic function

DW_TAG_subprogram

DW_AT_name
DW_AT_MIPS_linkage_name
DW_AT_external
DW_AT_low_pc
DW_AT_high_pc
DW_AT_frame_base
DW_TAG_lexical_block
DW_AT_name
DW_AT_low_pc
DW_AT_high_pc
DW_TAG_lexical_block
DW_AT_name

"addition"
"r8m_info"

no

0x00000020
0x00000054
DW_0P_call_frame_cfa

"cmG_entry"
0x00000029
0x0000004b

"cmF_entry"

DW_AT_low_pc 0x0000004b
DW_AT_high_pc 0x00000054
Arash Rouhani — Thesis presentation 15/32

CHALMERS

This is a solved problem, of course!

e DWAREF to the rescuel!

< 1><0x0000008d> DW_TAG_subprogram

DW_AT_name "addition"
DW_AT_MIPS_linkage_name "r8m_info"
DW_AT_external no
DW_AT_low_pc 0x00000020
DW_AT_high_pc 0x00000054
DW_AT_frame_base DW_0P_call_frame_cfa
< 2><0x000000b3> DW_TAG_lexical_block
DW_AT_name "cmG_entry"
DW_AT_low_pc 0x00000029
DW_AT_high_pc 0x0000004b
< 2><0x000000cf> DW_TAG_lexical_block
DW_AT_name "cmF_entry"
DW_AT_low_pc 0x0000004b
DW_AT_high_pc 0x00000054

o DWARF lives side by side in another section of the binary.
Therefore it does not interfere.

Background — GHC— Magic function Arash Rouhani — Thesis presentation 15/32

CHALMERS

Introduction to the Execution Stack

e GHC chooses to implement Haskell with a stack.

Background — GHC— The Stack Arash Rouhani — Thesis presentation 16/32

CHALMERS

Introduction to the Execution Stack

e GHC chooses to implement Haskell with a stack.

e |t does not use the normal “C-stack”

Background — GHC— The Stack Arash Rouhani — Thesis presentation 16/32

CHALMERS

Introduction to the Execution Stack

e GHC chooses to implement Haskell with a stack.
e |t does not use the normal “C-stack”

e GHC maintains its own stack, we call it the execution stack.

Background — GHC— The Stack Arash Rouhani — Thesis presentation 16/32

CHALMERS
Similar but not same

e Unlike C, we do not push something on the stack when
entering a function!

Background — GHC— The Stack Arash Rouhani — Thesis presentation 17/32

CHALMERS
Similar but not same

e Unlike C, we do not push something on the stack when
entering a function!

e Unlike C, we have cheap green threads, one stack per thread!

Background — GHC— The Stack Arash Rouhani — Thesis presentation 17/32

CHALMERS

What is on it then?

e Recall this code:

1 case myBool of
2 True -> this
3 Flase -> that

Background — GHC— The Stack Arash Rouhani — Thesis presentation 18/32

CHALMERS

What is on it then?

e Recall this code:

1 case myBool of
2 True -> this
3 Flase -> that

e How is this implemented? Let's think for a while . ..

Background — GHC— The Stack Arash Rouhani — Thesis presentation 18/32

CHALMERS

What is on it then?

e Recall this code:

1 case myBool of
2 True -> this
3 Flase -> that

e How is this implemented? Let's think for a while . ..

e Aha! We can push a continuation on the stack and jump to
the code of myBool!

Background — GHC— The Stack Arash Rouhani — Thesis presentation 18/32

CHALMERS

What is on it then?

e Recall this code:

1 case myBool of
2 True -> this
3 Flase -> that

e How is this implemented? Let's think for a while . ..

e Aha! We can push a continuation on the stack and jump to
the code of myBool!

e We call this a case continuation.

Background — GHC— The Stack Arash Rouhani — Thesis presentation 18/32

CHALMERS
Peter's demonstration

e In August 2013 Peter Wortmann showed a proof of concept
stack trace based on his work.

The breakthrough in August 2013 Arash Rouhani — Thesis presentation 19/32

CHALMERS
Peter's demonstration

e In August 2013 Peter Wortmann showed a proof of concept
stack trace based on his work.

e My master thesis is entirely based on Peter's work.

The breakthrough in August 2013 Arash Rouhani — Thesis presentation 19/32

CHALMERS

The stack trace . ..

e For this Haskell code:

1 main :: I0 ()

2 main = do a

3 print 2

4

5 a, b :: I0 O

6 a=do b

7 print 20

8

9 b = do print (crashSelf 2)
10 print 200

11

12 crashSelf :: Int -> Int

13 crashSelf 0 = 1 ‘div‘ 0O

14 crashSelf x = crashSelf (x - 1)

The breakthrough in August 2013

Arash Rouhani — Thesis presentation

20/32

CHALMERS

... Is terrible!

e We get:

: stg_bh_upd_frame_ret
: stg_bh_upd_frame_ret
: stg_bh_upd_frame_ret
: showSignedInt

: stg_upd_frame_ret

: writeBlocks

: stg_ap_v_ret

: bindIO

: bindIO

: bindIO

: stg_catch_frame_ret

© 00N WN - O

[y
o

The breakthrough in August 2013 Arash Rouhani — Thesis presentation 21/32

CHALMERS

... Is terrible!

e We get:

: stg_bh_upd_frame_ret
: stg_bh_upd_frame_ret
: stg_bh_upd_frame_ret
: showSignedInt

: stg_upd_frame_ret

: writeBlocks

: stg_ap_v_ret

: bindIO

: bindIO

: bindIO

: stg_catch_frame_ret

© 00N WN - O

[y
o

e We want:
: crashSelf

: crashSelf

: print

b

a

: main

g > WP O

The breakthrough in August 2013 Arash Rouhani — Thesis presentation 21/32

CHALMERS
Then what did Arash do?

e In addition to an unreadable stack trace, the time and memory
complexity of stack reification can be improved.

Contribution Arash Rouhani — Thesis presentation 22/32

CHALMERS
Then what did Arash do?

e In addition to an unreadable stack trace, the time and memory
complexity of stack reification can be improved.

e The stack reification in Peter Wortmann's demonstration is
linear in time and memory.

Contribution Arash Rouhani — Thesis presentation 22/32

CHALMERS
Then what did Arash do?

e In addition to an unreadable stack trace, the time and memory
complexity of stack reification can be improved.

e The stack reification in Peter Wortmann's demonstration is
linear in time and memory.

e Obviously, if you throw a stack and then print it. It can not be
worse than linear in time.

Contribution Arash Rouhani — Thesis presentation 22/32

CHALMERS
Then what did Arash do?

e In addition to an unreadable stack trace, the time and memory
complexity of stack reification can be improved.

e The stack reification in Peter Wortmann's demonstration is
linear in time and memory.

e Obviously, if you throw a stack and then print it. It can not be
worse than linear in time.

e But, if you throw a stack and do not print it, a reification that
is done lazily would be done in constant time.

Contribution Arash Rouhani — Thesis presentation 22/32

CHALMERS
So the problems to tackle are:

e Make stack traces readable

Contribution Arash Rouhani — Thesis presentation 23/32

CHALMERS
So the problems to tackle are:

e Make stack traces readable

e Make reification optimal complexity wise

Contribution Arash Rouhani — Thesis presentation 23/32

CHALMERS
So the problems to tackle are:

e Make stack traces readable
e Make reification optimal complexity wise
e Add a Haskell interface to this

Contribution Arash Rouhani — Thesis presentation 23/32

CHALMERS
We must understand the stack

e What is on the stack?

Contribution — Using the execution stack Arash Rouhani — Thesis presentation 24/32

CHALMERS
We must understand the stack

e What is on the stack?

e The C stack just have return addresses and local variables.

Contribution — Using the execution stack Arash Rouhani — Thesis presentation 24/32

CHALMERS
We must understand the stack

e What is on the stack?
e The C stack just have return addresses and local variables.

e The Haskell stack have many different kinds of members. Case
continuations, update frames, catch frames, stm frames, stop
frame, underflow frames etc.

Contribution — Using the execution stack Arash Rouhani — Thesis presentation 24/32

CHALMERS
We must understand the stack

e What is on the stack?
e The C stack just have return addresses and local variables.

e The Haskell stack have many different kinds of members. Case
continuations, update frames, catch frames, stm frames, stop

Contribution — Using the execution stack Arash Rouhani — Thesis presentation 24/32

CHALMERS

Update frames

e Consider

1 powerTwo :: Int -> Int
2 powerTwo 0 = 1

3 powerTwo n = X + X

4 where x = powerTwo (n - 1)

Contribution — Using the execution stack Arash Rouhani — Thesis presentation 25/32

CHALMERS

Update frames

e Consider

1 powerTwo :: Int -> Int
2 powerTwo 0 = 1

3 powerTwo n = X + X

4 where x = powerTwo (n - 1)

e In GHC, thunks are memoized by default

Contribution — Using the execution stack Arash Rouhani — Thesis presentation 25/32

CHALMERS

Update frames

e Consider

1 powerTwo :: Int -> Int
2 powerTwo 0 = 1

3 powerTwo n = X + X

4 where x = powerTwo (n - 1)

e In GHC, thunks are memoized by default

e This is done by update frames on the stack

Contribution — Using the execution stack Arash Rouhani — Thesis presentation

25/32

CHALMERS

Update frames

e Consider

1 powerTwo :: Int -> Int
2 powerTwo 0 = 1

3 powerTwo n = X + X

4 where x = powerTwo (n - 1)

e In GHC, thunks are memoized by default
e This is done by update frames on the stack

e Details omitted in interest of time

Contribution — Using the execution stack Arash Rouhani — Thesis presentation 25/32

CHALMERS

New policy for reifying update frames

e So instead of saying that we have an update frame, refer to its

updatee.
0: stg_bh_upd_frame_ret - ----------- > 0: divZeroError
1: stg_bh_upd_frame_ret - ----------- > 1: crashSelf
2: stg_bh_upd_frame_ret - ----------- > 2: b
3: showSignedInt = ---------——- > 3: showSignedInt
4: stg_upd_frame_ret = = ----------- > 4: print
5: writeBlocks = @o—---------- > 5: writeBlocks
6: stg_ap_v_ret == 0o----------- > 6: stg_ap_v_ret
7: bindI0 0 —-m—mm————- > 7: bindIO
8: bindI0 @ —--—me——-—- > 8: bindIO
9: bindI0 0 —--—--————- > 9: bindIO
10: stg_catch_frame_ret - ----------- > 10: stg_catch_frame_ret

Contribution — Using the execution stack Arash Rouhani — Thesis presentation 26/32

CHALMERS

Other frames

e Many of the frames are interesting. But the most common one
is probably case continuations, which luckily are unique and
therefore useful when applying getDebugInfo

Contribution — Using the execution stack Arash Rouhani — Thesis presentation 27/32

CHALMERS
The problem

e On a crash, the stack is unwounded and the stack reified

e Control is passed to the first catch frame on the stack

Contribution — Reifying efficiently Arash Rouhani — Thesis presentation 28/32

CHALMERS

The problem

e On a crash, the stack is unwounded and the stack reified

e Control is passed to the first catch frame on the stack
e Imagine the function

1 catchWithStack :: Exception e =>

2 I0 a -- Action to run
3 -> (e -> Stack -> I0 a) -- Handler

4 -> 10 a

e What can Stack be?

e Can it really be lazily evaluated?

Contribution — Reifying efficiently Arash Rouhani — Thesis presentation 28/32

CHALMERS

The problem

e On a crash, the stack is unwounded and the stack reified
e Control is passed to the first catch frame on the stack
e Imagine the function

1 catchWithStack :: Exception e =>

2 I0 a -- Action to run
3 -> (e -> Stack -> I0 a) -- Handler

4 -> 10 a

e What can Stack be?
e Can it really be lazily evaluated?

e We have to be really careful, the stack is a mutable data
structure!

Contribution — Reifying efficiently Arash Rouhani — Thesis presentation

28/32

CHALMERS

One idea

e Internally, the execution stack is a chunked linked list.

e What if we freeze the stack and continue our stack in a new
chunk?

Contribution — Reifying efficiently Arash Rouhani — Thesis presentation 29/32

CHALMERS

One idea

e Internally, the execution stack is a chunked linked list.

e What if we freeze the stack and continue our stack in a new

chunk?

crash frame

!

frame (old)

!

____frame (old)

!

catch frame

!

___ frame (old)

!

stop frame

Contribution — Reifying efficiently

crash frame

!

frame (old) frame (new)

' '

frame (old) frame (new)

. '

catch frame frame (new)

NS

___ frame (old)

'

stop frame

Arash Rouhani — Thesis presentation 29/32

CHALMERS

Why an Haskell interface?

e Compare

e gdb style of stack traces
e Catching an exception with the stack trace

Contribution — Haskell interface Arash Rouhani — Thesis presentation 30/32

CHALMERS

Why an Haskell interface?

e Compare

e gdb style of stack traces
e Catching an exception with the stack trace

e The latter is much more powerful since we have control over it
in Haskell land

Contribution — Haskell interface Arash Rouhani — Thesis presentation 30/32

CHALMERS

Why an Haskell interface?

e Compare
e gdb style of stack traces
e Catching an exception with the stack trace
e The latter is much more powerful since we have control over it
in Haskell land

e We can:

e Print to screen

e Email it

e Choose to handle the exception based on if frame X is present
on

Contribution — Haskell interface Arash Rouhani — Thesis presentation 30/32

CHALMERS

Why an Haskell interface?

e Compare

e gdb style of stack traces
e Catching an exception with the stack trace

The latter is much more powerful since we have control over it

in Haskell land

e We can:

e Print to screen

e Email it

e Choose to handle the exception based on if frame X is present
on

Definitely a requirement for software running in production

Contribution — Haskell interface Arash Rouhani — Thesis presentation 30/32

CHALMERS

The final Haskell API

GHC.ExecutionStack
This is a module for the efficient but inaccurate Stack Traces. If you can take a factor 2 of performance penalty. You should consider using GHC.Stack as the

myFunction :: 10 ()
myFunction = do
stack <- reifyStack
dumpStack stack

ecutionstack is a data wrapper around ByteAr ray#, The Array is a reified stack. Each element can be thought as the Instruction Pointers. For languag
function. The Executionstack s described by the STG will only contain pointers to entry code of Info Tables.

Simple interface

reifystack :: 10 Executio

Reify the stack. This s the only way to get an ExecutionStack value.

dumpstack

10 ()

Pretty print the stack. Will print it to stdout. Note that this is more efficent than doing print as no intermediete Haskell values will get created

Complicated interface
ExecutionStack
data Executionstack
Constructors
Executionstack
unExecutionStack :: ByteArrays

& Instances

stacksize :

The number of functions on your stack.

stackIndex :: tionstack -> Int -> Add

e Meh

Contribution — Haskell interface Arash Rouhani — Thesis presentation 31/32

CHALMERS
Final remarks

e |t seems possible to create an efficient first-class value of the
execution stack that is available post mortem. If my ideas
work out this will be amazing

e This work will not be so super-useful unless it incorporates
with exceptions that Haskell is not aware of, like segmentation
faults. Think foreign function calls and Haskell code like:

unsafeWrite v 1000000000 (O :: Int)

Conclusion Arash Rouhani — Thesis presentation 32/32

	Title page
	Contents
	Motivation
	Background
	Haskell
	GHC

	The breakthrough in August 2013
	Contribution
	Using the execution stack
	Reifying efficiently
	Haskell interface

	Conclusion

