
Interception of moving objects with a robotic arm in a simulated
environment

Juan C. Garcia, Harrison Jones and Arash Rouhani*

Abstract— The problem of catching a moving object can
be divided into two sub problems. First, the object must
be perceived and its path must be estimated in order for
movements to be calculated that would result in successfully
catching the object in the future. The second sub-problem is
to find a catching configuration. This paper focuses primarily
on the second problem of finding an acceptable configuration.
Simple models that simulate sensor inaccuracy and randomness
are used to closely simulate real environments, and regression
models are used to estimate the object’s path in these simulated
real environments. Since multiple end configurations are accept-
able as the goal, we introduce a new concept called a multi-goal
RRT, a modified version of Rapidly-exploring Random Trees
(RRTs), which grows towards multiple goals simultaneously.
This approach was implemented in an attempt to have the RRT
grow toward several predicted path nodes. The multi-goal RRT
was compared against a regular RRT. The results show promise
for the application of Multi-goal in a real-world setting.

I. INTRODUCTION

A. Motivation

Robots will need to successfully intercept and catch mov-
ing objects as their abilities become more acquainted for
daily human use. The applications of such ability range
from military to assistive operations in the home. Robotic
agents able to track and intercept moving objects constitute a
valuable military asset, as they could provide protection and
tactical superiority to ground troops through the stoppage
of missiles, grenades and harmful projectiles. Flying-drones
would enhance their current capabilities, as they would be
able to automatically track objects of interest and intercept
enemy projectiles aimed at larger vehicles with human
personnel. Tracking and interception abilities also have an
application in the Biology and Genetics fields as researchers
could benefit from automated counting and transporting of
live cells, essential operations in many cellular engineering
applications such as cell sorting and fusion [3]. An ability
to catch moving objects would also be beneficial in the field
of Socially Assistive Robotics (SAR), as the main objective
is to stimulate the rehabilitation and management of lifelong
cognitive, social and physical disorders [9]. Robotic agents
could motivate patients to lift objects as part of their training
and rehabilitation, serving as playmate for ball throwing,
object lifting and tool handling exercises. In addition, robots
could monitor patient’s progress in order to catch drop
objects and avoid injuries.

We were specifically motivated to pursue this project by
two ideas. One is a video that illustrates a robot capable of
catching a piece of trash thrown using a vision system and

*{jgarcia39,harrisonhjones,rarash}@gatech.edu

limited path planning. The little trash robot seemed pretty
interesting and useful, and initially the thought of expanding
on the idea was toyed with. The other source of motiva-
tion came from a previous piece of work performed under
Professor Mike Stilman at Georgia Institute of Technology.
Tobias Kunz had worked on an algorithm that blocked known
sword paths in a simulated environment [7]. The group had
not explored the idea of predicting a sword swing given the
current path of the sword.

B. Problem

Given the explained motivations, we defined the problem
to be tackled as the interception of a moving object using a
7 DOF robotic arm in a noisy simulated environment with
limited information on the objects path. The object in our
case would be a moving sphere that is allowed to go through
obstacles as it follows its calculated projectile path. The arm
is not allowed to hit any obstacles as it tries to catch as many
sequential spheres as possible, with an increasing amount of
sensor and environment simulated noise.

C. Solution

The solution described in this paper utilizes an algorithm
which tracks the object, predicts its future path, and then
moves a virtual robot arm to intercept it. This is done by
using two different prediction algorithms, a linear predictor,
used for straight motions such as punching, and a quadratic
predictor, used for projectile objects such as thrown trash or
balls. After computing a predicted path, a Multi-goal RRT
is used to move the robot arm to intercept the object while
still avoiding obstacles in its environment.

II. RELATED WORK

The problem of tracking and intercepting moving objects
with robotic agents has been a well-researched topic through
the combination of Computer Vision, Planning and Machine
Learning techniques. As there have been many previous
efforts to intercept moving objects, we will list key results
that provide insights into the challenges of such endeavor.
Peter Allen et al. at the University of Columbia utilized
optic-flow techniques to track a moving object in a circular
track with a PUMA robotic arm. Most importantly, they
separated the perceived coordinates into a XY plane and a
Z-axis, modeled motion through derivations of velocity and
curvature, and ran a developed filtering method to handle
noise sources and estimate arc and bending characteristics
[1]. Their results showcased a robust enough method able to
repeatedly pick up an object moving in a planar surface and



grasp it. More recently, Jens Kober et al. at Disney Research
developed tracking and prediction methods to allow a robot
to play catch and juggle a ball [4]. In their approach, they
utilized Hough-transforms to track the moving balls through
an external camera system. For prediction, they modeled
the balls motion as point masses (i.e. quadratic predictors)
and implemented Kalman filters for handling noise and
environment uncertainties. The results obtained showed a
potential for having safe human-interactive robotic characters
throughout theme parks, but much work was still needed in
order to increase the robot’s reachable area and degrees of
freedom, both constrained during experimentation in order
to facilitate the approach. To tackle catching objects with
robots in real-time, Jan Peters et al. proposed in [7] the for-
mulation of a non-linear constrained-optimization problem
where the desired trajectories are encoded through parametric
representation. The result of such optimization is then used
through Nearest Neighbor, Support Vector Machines and
Gaussian regression to allow a real-time execution. Their
results showcases the trade-offs between computational time
and accuracy for real-time operations, as accuracy in predic-
tion must be satisfied in order for the robot to be able to
catch the moving object. In this project, we wish to explore
the initial feasibility of using RRTs variants for intercepting
moving objects in a simulated environment. Although RRTs
have been extensively used in the planning domains, no
relevant previous work was found where such technique was
specifically used for object interception.

III. METHODS

We’ll cover the methods in the order they are used in
a complete simulation. First, we must generate a projectile
path, then distortion is applied. In order to know where
it’s possible to catch the object some path prediction is
used. Then to actually get a series of possible robot stances,
inverse kinematics is applied to get some corresponding joint
configuration for each projectile position. Finally, and most
highlighted part in this paper, we search for the easiest to
reach joint space configuration. It should be noted that this
whole process is done iteratively, as at fixed time steps we
replan taking into account the most recent observation of the
projectile.

A. Path Projection

We create a path by sampling positions from the formula
for projectile motion:

~x(t) =~x0 +~vt +
~at2

2
Where the arrow notation denotes a variable being a vector

in the workspace. This simple equation covers most of the
motions in our application except for wind resistance. Note
that by setting the acceleration to ~0 the projectile will be a
straight line resembling a straight punch. By setting ~a =−~g
where ~g is a gravity constant we get a standard ”shoot from
canon” projectile motion. Wind is simulated by adding a
random constant to the acceleration.

1) Deciding ~x, ~v and ~a: We just saw how changing the
acceleration we’ll get simple models of different behaviors
that might be desired for our intended application. However,
in all cases we must make sure that it will be possible at all
to catch the thrown object, in other words, the trajectory must
intersect the set of reachable points of the arm. To ensure
that we introduce two new points, a random start position,
that simply is ~x0 and a random reachable position which
is a random point reachable by the robot arm. With these
approach in mind one can solve for the velocity if we fix the
acceleration. To simplify further and decrease the solution
space we set that the velocity to have an angle of 45 degrees
from the floor plane. For the wind to actually have a negative
impact, we let the calculations of the velocity be oblivious
of it.

2) Distortion: Since in later steps of the iteration the robot
is going to predict the remaining path, we must add distortion
to it to make it impossible to retrieve the whole original exact
path again. It’s hard to motivate any model besides simple
randomness here.

~xobserved(t) =~x(t)+noise

Where for each discrete time step in our simulation
the noise is a vector where each coordinate is a uniform
distribution in [−µ,µ]

B. Path Prediction

Given some sample points, we work backwards from the
equations in the model for path projection. We have two
prediction models, one assumes straight motion and the other
projectile motion. The equation

~xobserved(t) =~x0 +~vt +
~at2

2

will cover both cases, only that you set a = 0 in the linear
version. However, only two and three data points are required
to solve this system for the linear and quadratic version
respectively, to fix that we simply only look at the most
recent data points we require.

Note that this is of course not exact as it does not
compensate for the unknown noise, to compensate for the
noise, one can treat a chunk of points as one point by taking
their average. Note that with this strategy we still need more
points for the quadratic version. If the chunk sizes are to
small, we won’t defeat noise and if it’s too small we won’t
be able to estimate the trajectory, as we must wait until we
have enough points to create the chunks. Therefor a dynamic
chunk size was chosen that grows with number of data points.
A cap was set on the chunk size to avoid looking at too old
and outdated data.

We found both the working backwards from the equations
prediction and the idea of chunking the data to be the sim-
plest to implement and choose that over more sophisticated
regression.



C. Inverse kinematics

Knowing the trajectory, one can use inverse kinematics to
find a corresponding joint space configuration. We do use the
pseudo inverse Jacobian method. That is to simply iterate

∆q = J+∆x

until convergence where J+ = JT (JJT )−1.

D. Planning

Either one of the two algorithms are used for planning, the
regular RRT [8] and the multi-goal RRT that is introduced
in this paper. Their final selection depends on the parameters
set before a simulation is started.

The multi goal RRT is working very much like the
traditional one with the exception that there are multiple
goals and reaching any one of them is considered a success.
One might think of two different strategies for the multi goal
RRT. The first being that you return the first path that leads
to any of the goals and the second strategy is to make sure
you’ve got a path for each goal and then return the shortest.
The first one is always faster because it don’t need to grow
the tree until each goal has been reached. Since it also was
simpler to implement we went with a multi goal RRT using
the first strategy.

What differs between a regular RRT and any of the two
multi goal RRTs kinds is only the termination condition.
The single RRT continues to grow until the goal has been
reached, the first strategy of the multi goal keeps growing
until any goal has been reached while the other strategy keeps
growing the tree until all goals have been reached.

As for the concepts of greedy, connect and bidirectional,
only greedy and the connect strategy is applicable to the
multi goal RRT. The original greedy strategy takes the goal
and grows towards it[6], [2]. In our case we take any of
the goals randomly and grow towards it. As for connect
one would imagine growing towards a random configuration
and then keep growing to the same configuration until one
collides, just like the original connect algorithm does[5]. We
will, however, only use the greedy goal biasing in both our
regular RRT implementation and multi-goal RRT. The reason
for this was to make the behavior easier to reason about
than it would be if multiple features could cause unexpected
results.

E. Replanning, Discretization and Arm Speed

Before one iteration is done and we start replanning with
the most recently observed data we move the arm. For the
simulation to be realistic, the maximum distance the arm
can move must be limited for each time step. The question
is how distance is measured, or rather in which norm. Most
realistically for our application might have been the infinity
norm, which means that all joints are allowed to rotate a fixed
amount of degrees independent of each other. Regardless of
that we used regular euclidean distance, the two norm. The
reason is that we set the step size parameter to the RRT and

interpret the second position in its returned path as the next
position for the arm.

With the joints configured to their new angles, we increase
the simulation time by the fixed ∆t and keep iterating and
replan as we allow our path predictor is fed with more points
in the observed trajectory.

IV. EXPERIMENTS

The experimentation and accompanied development were
targeted towards (1) determining the robustness of the ap-
proaches presented to noise sources and (2) selecting the
best combination of predictors and RRT-variants for use in a
future non-simulated setting. The overall approach presented
in the previous sections was tested in the DART/GRIP
environment through a developed interface that allowed for
the specification of different amounts of noise, number
of simulations, predictor type, among other parameters. In
order to visualize the implementation’s behavior, additional
markers were added as shown in Figure 4c to show the
arm’s perceived location of the ball, the predicted location
of the ball and the current-best prediction to be used for
final interception. The results were analyzed according to the
following criteria: (i) success rate given an amount of noise,
(ii) success rate vs. increasing amounts of noise for different
combinations of RRT-variants and predictors, (iii) completion
time given an amount of noise. Success rate was defined as
the amount of times the arm was able to intercept the moving
sphere divided by the total number of simulations (i.e. a
percentage). The workspace distance d between the arm’s
end-effector and the moving sphere was repeatedly calculated
in order to determine whether an interception had occurred. If
d was less than a given threshold t, then the arm successfully
intercepted the moving sphere. In this case, t was set to the
radius of the sphere (i.e. 0.12). The graphs shown below
summarize the results of the experiments undertaken. Their
connotations and insights will be analyzed in the following
section.

V. ANALYSIS

Figure 1a shows the success rates for combinations of
Multi-goal and Single-goal with Linear and Quadratic predic-
tors after 100 simulations with a noise of 0.05. In both cases,
the Single-goal approach achieves a higher success rate than
the Multi-goal approach. The difference in such success, an
average of 3 percent units, is not enough to conclude the
dominance of one method over the other for this given noise
amount. In addition, the quadratic predictor seems to yield
higher success rates when used by both approaches with
this noise amount, indicating the better representation of the
projectile path by our predicting equations.

Figure 1b , in contrast, showcases a much more interesting
scenario. With a noise amount of 0.09, the Multi-goal and
Single-goal approaches achieve similar success rates (about
87 percent) when employing the Linear predictor. When the
approaches utilize the Quadratic predictors their success rates
drop by a combined average of 8 percent units. In this case,
the Multi-goal approach achieves a noticeably lower success



 70

 75

 80

 85

 90

 95

 100

M
ulti-Goal

Single-Goal

S
u
cc

e
ss

 R
a
te

Linear
Quadratic

(a) µ = 0.05

 70

 75

 80

 85

 90

 95

 100

M
ulti-Goal

Single-Goal

S
u
cc

e
ss

 R
a
te

Linear
Quadratic

(b) µ = 0.09

Fig. 1: Success rates for combinations of Multi-Goal RRT,
Single-RRT, Linear and Quadratic predictors after 100 sim-
ulations having varying noise µ

rate. With a significant increase in sensor noise, the robotic
arm’s perceived sphere path does not longer follow projectile
motion characteristics as the sphere bounces around. In this
case, the Quadratic predictor in a way over fits the model as
it uses 3 averaging points to predict a curved motion. The
Linear predictor only predicts line trajectories that with a
clutter of perceived points yield higher accuracy rates.

Figure 2 depict the performance of both the Single-
goal and Multi-goal RRT approaches as the noise amount
increases. A Linear predictor was utilized in both cases
as previous analysis demonstrated its robustness to sensor
noise. For each noise case, the average success rate of 10
simulations was computed. Both approaches rates steadily
drop as the amount of noise increases, with the Single-goal
RRT staying above 90% for noise sources between 0 and
0.1 while the Multi-goal RRT only for value between 0 and
0.05. The similar behavior of both approaches regarding an
increase in noise showcases the need to implement better
prediction techniques, as the current ones are only naive
approaches to tackle such noise and uncertainty scenarios. A
more thorough analysis of these approaches response in noisy
situations would be achieved through known regression and

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 0.05
0.1

0.15
0.2

0.25
0.3

S
u
cc

e
ss

 R
a
te

Noise

Multi
Single

Fig. 2: Average RRT success rates versus increasing noise
with Linear Predictor; 10 simulations for each increase in
0.05 the noise µ

 7000

 7200

 7400

 7600

 7800

 8000

M
ulti-Goal

Single-Goal

A
v
e
ra

g
e
 C

o
m

p
le

ti
o
n
 T

im
e
 (

m
s)

Milliseconds

Fig. 3: Average times for Single-goal and Multi-goal RRTs
after 100 simulations with both Linear and Quadratic pre-
dictors where µ = 0.05

estimation techniques. Time constraints forced these topics
to be considered for future work.

At last, Figure 3 presents the average execution times dur-
ing 100 simulations of Single-goal and Multi-goal RRTs with
Linear predictors. Multi-goal RRTs achieve faster execution
times (i.e. 200ms difference) than Single-goal RRTs as the
tree growth is biased by all reachable points of the sphere
trajectories. When any goal is reached, reaching the rest is
not computationally expensive as these points are expected
to be mostly close in space and time. Single-goal RRTs in
contrast, constantly expands the tree towards the closest point
in terms of joint space distance, thus taking longer to get
there.

Additionally, projectile paths passing through reachable
areas surrounded with obstacles were examined to determine
further differences between the RRT kinds. Figure 4 shows
two resulting configurations for Multi-goal and Single-goal
RRTs given the same projectile path. Above 80% of the
time, the Multi-goal RRT choose to catch the object before
it collided with the object, while Single-goal RRT usually
waited for the object in the later parts of the motion. We
believe such behavior is due to the fact that the Single-goal
RRT picks the closest point in terms of joint space distance
and in this case, such point is located in the space after the
sphere passes through the obstacle. In a sense, Single-goal
RRT is a lazy approach, as it will try to intercept the moving



(a) Multi-goal RRT

(b) Single-goal RRT

(c) Legend

Fig. 4: Comparison of intercepting locations for the two
RRTs.

sphere with the minimum joint effort possible. On the other
hand, Multi-goal RRT considers all points in the reachable
object trajectory, and when any of them is reached, it returns
a path to follow. This implementation generally tries to catch
objects at earlier times as this allows for some leniency in
terms of replanning if the arm is not able to catch the moving
sphere.

VI. DISCUSSION

It would be interesting to test the algorithms in an en-
vironment where there are more objects that the arm can’t
touch. Such experiments might lift the potential from multi
goal RRTs, if a multi goal RRT should prove useful against

the single goal RRT aimed at the closest goal, it must expand
a towards a more distant goal which in fact is closer with
respect to there being objects in the way for reaching the
close goal. While there might be many factors for the results
for figure 3, one might guess that the approximately equal
run times was due to that they reached their goal in the same
amount of steps and that is because the closest goal without
respect to object was the same goal with respect to objects.
On the other hand then one might expect their performance
over all be quite similar which it appears not to be from figure
1 and 2, maybe it’s decrease in performance was simply due
to it usually founds the same closest object but occasionally
in between the iterations detours to another goal making it
somewhat more clumsy.

Another idea stemming from the discussion above is to
not actually do replanning, since the nature of randomness
in the RRT makes it non optimal and it would be better to
committing to trying to reach one particular stance rather
than reevaluating the situation all the time and go for
occasional detours. A great future work would be to actually
analyze if the multi goal RRT does take detours or not.

We mentioned an alternative strategy for the Multi-goal
RRT. The strategy basically was to not stop once it reaches
it’s first goal, instead expanding until it hits all goals and
then pick the one with the shortest path. The idea is that this
should not be computationally expensive at all because

As an extra benefit to both RRT planners, path shortening
could be applied. Here one can also try to use some sort of
lazy path shortening, utilizing the fact that since replanning
occurs so often you only need to know the beginning of a
plan.

It must also be said that the most obvious step for
actually having a good moving object interceptor would be
to improve upon the path prediction, using standard tools
like linear/quadratic regression or Kalman filters.

REFERENCES

[1] Peter K. Allen, Aleksandar Timcenko, Billibon Yoshimi, and Paul
Michelman. Automated tracking and grasping of a moving object
with a robotic hand-eye system. IEEE Transactions on Robotics and
Automation, 9:152–165, 1991.

[2] Dave Ferguson, Nidhi Kalra, and Anthony Stentz. Replanning with rrts.
In ICRA, pages 1243–1248, 2006.

[3] Tao Ju, Shuang Liu, Jie Yang, and Dong Sun. Apply rrt-based
path planning to robotic manipulation of biological cells with optical
tweezer. In Mechatronics and Automation (ICMA), 2011 International
Conference on, pages 221 –226, aug. 2011.

[4] J. Kober, M. Glisson, and M. Mistry. Playing catch and juggling with
a humanoid robot.

[5] J.J. Kuffner Jr and S.M. LaValle. Rrt-connect: An efficient approach
to single-query path planning. In Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, volume 2,
pages 995–1001. IEEE, 2000.

[6] B. Sujith Kumar, Pratik Agarwal, P. Abhimanyu, Prem Bhargav, and
Dr. K. Madhava Krishna5. Robocup ssl team description, irl rc. 2010.

[7] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters. Trajectory planning for optimal robot catching in real-time. In
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 3719–3726. IEEE, 2011.

[8] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. The
International Journal of Robotics Research, 20(5):378–400, 2001.

[9] A.M. Okamura, M.J. Mataric and, and H.I. Christensen. Medical and
health-care robotics. Robotics Automation Magazine, IEEE, 17(3):26
–37, sept. 2010.


